Effect of Harmonic Components on EMF of Synchronous Generator or Alternator

Effect of Harmonic Components on an Induced EMF in Alternators:

         Before knowing how harmonic components effect the induced EMF let us know what are harmonics and harmonic components in alternators.In synchronous machines, voltages and currents are induced, which are in sinusoidal waveforms.But in practical these sinusoidal waveforms will deviate to form non-sinusoidal waveforms.These non-sinusoidal waveforms are expressed in terms of Fourier transforms which are the sum of series of sinusoidal waveforms.Now let us understand the effect of harmonic components on the synchronous generator.


Must Read:

     The flux density distribution around the air gap in all well designed alternators symmetrical with respect to the abscissa and also to polar axes.Thus it can be expressed with the help of a Fourier series which do not contain any even harmonics.

         So flux density at any angle θ from the interpolar axis is given by, 

             B = Bm1 sin θ + Bm3 sin 3θ +........... + Bmx sin xθ 

where     x = Order of the harmonic component which is odd 
             Bm1 = Amplitude of fundamental component of flux density 
             Bm3 = Amplitude of 3rd harmonic component of flux density 
             Bmx = Amplitude of Xth (odd) harmonic component of flux density 

The e.m.f. generated in a conductor on the armature of a rotating machine is given by 
                            ec = B.l.v 

Substituting value of B, 

       e= [Bm1 sin θ + Bm3 sin 3θ +........... + Bmx sin xθ].l.v

               l = Active length of conductor in metre 
              d = Diameter of the armature at the air gap 
              v = Linear velocity = π d ns 

where          ns = Synchronous speed in r.p.s.  

Now            NS = 120f/P
                   ns  = 120f/60P = 2f/P

                   v  =  π d 2f/P
Substituting in the expression for ec , 

          ec = [Bm1 sin θ + Bm3 sin 3θ +........... + Bmx sin xθ].l.(2πdf/P)

Area of each fundamental pole, 


     ec = [Bm1 A2f sin θ + Bm3 A2f sin 3θ +........... + Bmx A2f sin xθ]

Area of xth harmonic pole, Ax =  πdl/xP =  A1/x

This is because there are xP poles for the xth order harmonic. 

      ec = 2f [Bm1 A sin θ + Bm3 3A3 sin 3θ +........... + Bmx xAx  sin xθ]

        Bm1 AΦ1m = Maximum value of fundamental flux per pole 

            Φ1= (2/π)Φ1m = Average value of fundamental flux per pole 

Similarly, the average value of xth harmonic flux per pole can be obtained as, 

                                     Φx = (2/π)Ax Bmx 
Substituting the values of flux in ec we get the expression for e.m.f. induced per conductor as, 

             ec = πf (Φ1  sin θ + 3Φ3 sin 3θ +........... + xΦx  sin xθ)

Instantaneous value of fundamental frequency e.m.f. generated in a conductor is, 
                       ec1 = πfΦ1 sin θ       V 
Hence the R.M.S. value of fundamental frequency e.m.f. generated in a conductor is, 
                       ec1 = πfΦ1/√2 = 2.22 fΦ1
Hence R.M.S. value of xth harmonic frequency e.m.f. generated in a conductor is, 

It can be observed that the magnitude of harmonic e.m.f.s are directly proportional to their corresponding flux densities. 

    The R.M.S. value of resultant e.m.f. of a conductor is,


Effect of Harmonic Components on Pitch Factor in Synchronous Generator:

We know that, 

            α = Angle of the short pitch for fundamental flux wave then it changes for the various harmonic component of flux as,

                     3α = For 3rd harmonic component 
                     5α = For 5th harmonic component 
                     xα = For xth harmonic component 

Hence the pitch factor is expressed as, 

              x = Order of the harmonic component 

Effect of Harmonic Components on Distribution Factor in Alternators:

Similar to the pitch factor, the distribution factor is also different for various halt components. 

The general expression to obtain distribution factor is, 


Total E.M.F. Generated due to Harmonics in synchronous Generator:

        Consider the windings to short pitch and distributed, the e.m.f. of a fundamental  frequency is given by, 

                         E1ph = 4.44 Kc1 Kd1 Φ1 f Tph   V

 where               Tph = Turns per phase in series 
                         Φ1  = Fundamental flux component 

While the phase e.m.f. of Xth order harmonic component of frequency is given by, 
                         Exph = 4.44 Kcx Kdx Φx (xf) Tph   V 

The total phase e.m.f. is given by, 


Line EMF: For star connected, the line or terminal induced e.m.f. is √3 times the total phase e.m.f.But it should be noted that with star connection, the 3rd harmonic voltages do not appear across line terminals though present in phase voltage. 

Key Point: In delta connection also, 3rd,9th,15th..... harmonic voltages do not appear at the line terminals.

Also Read:

Taking ratio of fundamental frequency e.m.f. and Xth order harmonic frequency e.m.f. we can write, 

From the ratio in above equation, we can write 

Thus if the third harmonic is given to be 10% of fundamental

                                                  Φ3 = 1/3*(10% of Φ1) = 0.0333Φ1 

         Now today we have learnt about Effect of Harmonic Components on Synchronous Generator or Alternator and also emf generated due to harmonic components in Synchronous Generator or Alternator.You can download this article as pdf, ppt.If any queries, you can mail @ palakalaamarnath@gmail.com

No comments:

Post a Comment

Google+ Badge

Subscribe to our Newsletter